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A m e t h o d  of  successive a p p r o x i m a t i o n s  is p roposed  for  the  eva lua t ion  o f  
the  t ime-cor re la t ion  func t ions  such  as those  tha t  give the  the rma l  t r an spo r t  
coefficients o f  gases.  The  m e t h o d  is based  on  a ca lcu la t ion  o f  the  changes  
in corre la t ions  o f  appropr i a t e  func t ions  o f  the  molecu la r  velocity which  
are  a resul t  o f  coll is ions in the  gas.  T he  decaying  rates  o f  the  corre la t ions  
are expressed  as integrals  of  the  differential coll ision cross  section.  W h e n  
the  first a p p r o x i m a t i o n  is in t roduced  in the  express ions  for  the rmal  t rans-  
por t  coefficients, resul ts  are  ob ta ined  for  the  coefficient o f  b inary  diffusion 
and  the  viscosity and  the rma l  conduc t iv i ty  o f  s ing le -componen t  sys tems  
which  are  identical wi th  those  o f  the  first C h a p m a n - E n s k o g  so lu t ions  
o f  the  B o l t z m a n n  and  E n s k o g  equa t ions .  F o r  the  coefficients o f  viscosi ty 
and  the rma l  conduc t iv i ty  in m u l t i c o m p o n e n t  sys tems ,  it is s h o w n  tha t  the  
first a p p r o x i m a t i o n  leads to express ions  of  the  fo rm  of  the  Su the r l and  
and  Wass i l jewa re la t ions ,  respectively.  
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1. I N T R O D U C T I O N  

The use of collison-rate and mean-free-path concepts in calculations of the 
transport coefficients of gases has a long history. (1-5~ In part, the appeal of 
this approach relative to the more rigorous Chapman-Enskog analysis o f  
the Boltzmann equation lies in the physical picture that accompanies the 
collision theory, but which is almost completely obscured by the mathe- 
matical formalism required to solve the integrodifferential equation that 
specifies the velocity distribution function in a dilute nonequilibrium system. 
From a pedagogical point of view, it is often found convenient to give an 
introductory discussion of the kinetic theory of gases based on collision 
theory, in spite of the fact that the expressions derived are not in complete 
agreement with Chapman-Enskog theory. In one of the most sophisticated 
versions of collision theory, Monchick and Mason (6~ have succeeded in 
recovering the Chapman-Enskog results for Maxwellian molecules, and ob- 
tained transport coefficients for more general interaction potentials which 
differ only slightly from the most rigorous expressions. 

In this paper, we wilt present an extension of the collision theory ideas 
which leads precisely to the explicit Chapman-Enskog first approximation 
for the transport coefficients of pure gases. The derivation is of interest be- 
cause it completely avoids attempts to solve the Boltzmann equation, thus 
avoiding the mathematical complexity that invariably seems to accompany 
this problem. Our approach is based on the time-correlation function de- 
scription of nonequilibrium systems. (7'0~ In this theory, which is tantamount 
to a perturbation solution of the full Liouville equation, expressions for 
transport coefficients are obtained in terms of the equilibrium averages of the 
time evolution of appropriate molecular variables. The evaluation of these 
time-correlation function expressions for one-component gases at low 
density has been considered by Mori and others, who have shown that the 
explicit Chapman-Enskog first approximation results for several transport 
coefficients could be obtained by writing the time correlations as exponentially 
decaying functions of time, with decay constants given by the approximate 
eigenvalues of the binary collision operator. (9~ Obtaining approximations to 
these eigenvalues continues to provide an area of active research. (1~ 

The validity of the time-correlation function approach was confirmed, 
and the applicability of the general method extended to the study of the 
density dependence of transport coefficients, by Zwanzig' m~ Kawasaki and 
Oppenheim, (12~ and others. (13-15) Other approaches to the problem by-passed 
the need for sophisticated mathematical analysis implicit in these efforts by 
evaluating the time correlation formulas in terms of samples of molecular 
trajectories taken from computer simulations of the system, (~6~ and by using 
hypothetical functional forms for the "memory function" appearing in the 
equation of change of the correlation itself. (17'18~ 
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Work such as this has provided valuable results and tremendous impetus 
to the field, at the expense of extensive computational effort. More heuristic 
analyses that have been developed (19'2~ have led to results that were rather 
limited as to the intermolecular potentials they could accommodate, and 
gave no indications on how systematic improvements might be accomplished. 

The method described here for evaluating time-correlation functions is 
based on the ideas of mean-free-path theory in the sense that results are 
obtained by calculating collisional changes in the time-correlation functions 
in lieu of solving an integral equation with collisional effects appearing in 
its kernel. While earlier rigorous studies of the time-correlation method have 
shown that obtaining the solution of the Boltzmann equation is equivalent 
to evaluating the time-correlation function expressions, they have not shown 
that direct evaluation of the time-correlation functions could yield transport 
coefficients of kinetic-equation quality except for hard spheres. The method 
of this paper provides a means of achieving this goal. 

Our approach to the problem is based on a calculation of the probabili- 
ties that a molecule in the system will participate in a chain of specified 
collisions in a given interval of time. These are then used to compute the 
time dependence of the distribution functions for the variables appearing 
in each time-correlation function expression. The time-correlation functions 
themselves are easily obtained from these distributions. If the physical 
assumptions implicit in the Boltzmann and Enskog equations are made that 
collisions only occur between pairs of molecules and that the precollision 
velocities of the molecules participating in a specified collision are un- 
correlated with one another, the collision chain probabilities are obtained 
in terms of the differential collision cross sections for the system. In this way, 
approximations to the transport coefficients are obtained whose accuracy 
depends on the number of collisions included in the chain. It is found that 
the first approximations lead to expressions for the binary diffusion coefficient 
and the kinetic contributions to the coefficients of viscosity and thermal 
conductivity in single-component systems that are identical to those of the 
first approximation of the Chapman-Enskog solutions of the equations of 
Boltzmann and of Enskog, respectively. For the coefficients of viscosity 
and thermal conductivity in multicomponent systems, our first approxima- 
tion leads to expressions having the form of the semiempirical Sutherland 
and Wassiljewa equations, respectively. 

2. P R O B A B I L I T I E S  OF C O L L I S I O N  C H A I N S  

We consider here elastic collisions of pairs of molecules that interact 
through spherically symmetric central forces. The species of molecules are 
denoted by lower case Greek letters v,/~, K ..... with v =/x corresponding to 
the case of a pair of atoms of like species. In the collisions, a precollision 
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relative velocity g = v~l - V,z is rotated without change of length g through 
an angle X. Neglecting any quantum "degeneracy effects," the differential 
collision rate per molecule of species v and velocity vvl is proportional to the 
density of appropriate collision partners and to the solid angle 27r sin X dx- 
The corresponding proportionality constant ~,(g,  x) may be calculated by 
quantum mechanics or classically. (2~ In the latter case, an impact parameter b 
may be assigned to each collision and the angle x is a function of b and 
g so that 

a~.(g, X) = g ~. b~ldbJdxl/sin X (1) 
i 

where the summation is over impact parameters b~, which, with g, correspond 
to trajectories leading to the particular value of X. 

The density of molecules of type/~ with velocities around %2 that will 
collide with a specified species v molecule during an interval dt is thus 
n~G~(o~u)fu(v.2) d%2, wheref~ dye2 is the Maxwell-Boltzmann function 

f~(v~2) = (m~/2~k T) a/2 e x p ( -  m.v2.2/2k T) (2) 

When the radial distribution function G~ t h a t  appears in this relation is 
multiplied by the macroscopic densitY n. and is evaluated at the contact 
distance g~u, it gives the density of/z molecules at distance Crv~ from a specified 
v molecule. In this expression, the contact distance must be defined as the 
intermolecular distance which is attained if and only if a collision occurs, 
and for hard sphere molecules, this distance is the hard sphere diameter 
~v~. Realistic potentials which are nonvanishing for large interparticle 
separations require the use of a cutoff at some reasonable intermolecular 
separation beyond which the potential energy of interaction vanishes. In 
this case, the collision rates will be well behaved. It will be seen that the results 
of this work allow the passage to the limit of the cutoff at infinity, in which 
case G = 1, without difficulty. The differential collision rate now can be 
written in the well-known form ca) 

o,, = 2*rn~,Gv,f~ dv~,2~v~ sin X dx (3) 

(The dependence of co on all the variables specifying the collision is left 
implicit.) We shall also require the total collision rate of a molecule of 
velocity v~l, which we denote by Zoo, 

z o o =  2~ Z n,,G~,, f f,,(v,,~) dv,,~ f o~,, sin x d x (4) 
tL 

We now use the differential collision rates co and X,o to construct the 
probability that a specified chain of n collisions will occur in an interval of 
time t. The rates enter the analysis because the probability of a v molecule 
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of velocity v~l undergoing a specified collision during the limiting interval 
dt  is oJ dr. We shall assume that no more than one collision may occur in this 
limiting interval of time and ignore the effects of instantaneous ternary or 
higher order collisions. Further, we shall adopt a "stosszahlansatz" that the 
only collisions occurring are those for which the precollision velocities of the 
two molecules are uncorrelated with one another. 

If  the velocity of a single molecule was not affected by its collisions, or if 
its total collision rate did not depend on its velocity, the collision chain 
probabilities would be obtained from the Poisson distribution for the 
probability of n collisions, each of a different probability oJ dt,  occurring 
during N = t /d t  intervals of time. This leads to the result that the probability 
of a chain of n collisions during an interval of time t, fcn~, is the product of 
the n rates of the collisions occurring in the chain and a factor 
( tn /n! )  exp(-tZco),  where ZoJ is the overall collision rate of the molecule 
initiating the chain and the factor l / n !  restricts the calculation to that for 
one particular sequence of the collisions in time. This result correctly pro- 
vides the probabi l i tyf  (~ that a molecule of species v and velocity vvl survives 
an interval t without collision, 

f(0~ = e x p ( -  tZoJ) (5) 

and the probability f(l~ that it undergoes only one specified collision in that 
interval, 

f(1) = to~ e x p ( -  tZw) (6) 

For chains of two or more collisions, however, the velocities of the mole- 
cules change in collisions and the total collision rates depend on velocity 
between collisions, so that a modification of the Poisson distribution is re- 
quired. For the collisions we are considering, a specified sequence of n col- 
lisions during a time interval t corresponds to the three mutually independent 
events, (a) no collision during an interval of time r < t, (b) the first collision 
in the succeeding interval of time dr, and (c) the subsequent chain of n - 1 
collisions over the interval t - r. The probability of events (a) and (b) 
together is [exp(-rZeo)]oJ dr.  The n-collision chain and ( n -  1)-collision 
chain probabilities are related by the condition that 

fo' f(.~)(t) = co d~ e - ' Z ~  - , )  (7) 

We now prove that the expansion in powers of t o f f  ("~ exists, and has no 
coefficient of order less than n. By inspection of Eqs. (3) and (4) f o r f  (~ and 

f(1), this is true for these two cases, and we may consider the consequences 
of the assumption that 

f(~-1)(t - ~-) = a~_z ( t  - r )  ~-1 + a~(t - .c) ~ + ... 
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for successively larger values of n. When this expression is substituted into 
Eq. (5), there follows a corresponding expansion f o r f  <~ with no power of t 
lower than t", thus proving our result. Explicit expressions for any f ~  with 
n >/ 2 may be obtained by this procedure; since these functions are not re- 
quired at the level of approximation used in this paper, they will not be 
discussed further. 

3. CORRELATIONS OF D Y N A M I C A L  VARIABLES 

The time-correlation function formulas for transport coefficients L are 
of  the form 

L 
oo 

L = CV -1 dt XF(t) (8) 

where ~( t )  is the scalar product correlation function for a pair of dynamical 
variables A and B of common tensorial character (~> 

l "  

W(t) = <A(O)B(t)) = (I/NO J d{N} W~A(0) B(t) (9) 

In this equation, WN is the equilibrium N-particle distribution function, 
d{N} is the volume element for integration over the phase space of the N 
particles, and l/N! is the normalization to unity for integration of WN over 
this phase space, where N! is the product of N~! over all species v in the 
system. 

For  dilute gases, A and B are, respectively, sums over molecules of 
functions A~ and Bv~ of the single molecule velocities. These functions vary in 
time with the occurrence of collisions. Because A~ and Bv~ are odd functions 
of  velocity, the averages of products A~,B,j will vanish for vi # t~j when the 
velocities of the indicated molecules are uncorrelated, as they are at t = 0. 
Thus, we may write Eq. (9) as 

W(t) = ( ~  NdAvl(O)B~I(O) + A~I(O) AB(t)] N) (10) 
X 7  / 

with 

AS(t) = ~ ~ [B.j(t) - B~j(O)I (11) 
u J 

This form applies when A and B include sums over all species. When, as is 
the case for the diffusion coefficient expression, A and B are sums over the 
molecules of species v and/z, respectively, the summation over/~ in Eq. (11) 
should be dropped. 

In addition, tz # v in the expressions for mutual diffusion coefficients 
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and consequently the time-independent term in Eq. (10) is absent for those 
correlation functions. When tz = v, that term is given by 

(AvlBvl) = f dvvlf,(vv~)AvlBv~ (12) 

where f~ is given by Eq. (2). 
The second average appearing in Eq. (10) can be written in terms of the 

joint probability density W(A,I(O), A B(t)): 

(A~(0) Aa(t))  = f dA~(O)dAa(t)A,~(O) AB(t) W(A~I(0),AB(t)) (13) 

The probability that values Av~(0) and AB(t) will occur can be written as 
the product of the probability that A,~(0) will occur at t = 0 and the con- 
ditional probability that AB(t) will occur at time t if it is known that Avz(0) 
exists at time zero. The distribution of A,I(0) can be written as 

W(Av,(O)) f dvvlfv(Vvl) 8(A,, - A~(0)) (14) 

Furthermore, the probability of obtaining some value of A B(t) is equal to the 
probability of the collision chains leading to that value of the variable at 
time t. If  AB <") is the change in B caused by a chain of n collisions, this 
conditional probability is 

W(AB(t); A,~(0)) = ~ ~ ~ ... ~f<") 8(AB (", - AB(t)) (15) 
n > O  

In this equation, the set of unindexed summations is over all chains of n 
collisions initiated by a molecule possessing the value of A~I = A,I(0) at 
t = 0 .  

The product of Eqs. (14) and (15) provides the joint probability density 
in Eq. (13). When this expression is substituted into Eq. (10), one obtains a 
formal equation relating tF(t) to the differential collision chain probabilities: 

�9 + .f z z z 
(16) 

We now consider in detail the first two terms in this expansion: 

~F(t) = ~ Nv((AvIBv~>+ f dv~fv(vv~)A,~ ~f (~)AB(~)+  ...) (17) 

To evaluate the term includingf (1), we again use the fact that the average of 
A~IBuj vanishes unless the velocities of molecules vl and ~j are correlated. 
After only one collision, such correlations will only exist in two instances, 
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first, when/,j = vl, and second, when two molecules/,j and vl have collided. 
Therefore, AB (D will contain two terms contributing to Eq. (17), one with 

An(D where /,2 refers to the molecule colliding ~AUm and the other with ~ . 2 ,  
with vl during time t, with probability fro. Consequently, the expression 
for the time correlation function uk'(t) is 

~ ( f <D (~)A~m, ) (18) W(t) = N~ (A~B~I) + dv~,f,(v~z)Avz ~ , f  (AB~x + ~,~.2, + "'" 

In this equation, (A~IB~) and the term involving ~'-'v*Anm reflect the decay of 
the autocorrelation of A~ and B~, while the remaining term describes the 
growth of the collision-mediated correlation of B,= with A~,. 

The unspecified terms in Eqs. (15)-(17) correspond to the contributions 
of chains of two or more collisions to qP(t). We reserve the consideration of 
these terms for later work, demonstrating below that realistic expressions for 
transport coefficients may be obtained by considering "chains" of no more 
than one collision. 

4. T R A N S P O R T  C O E F F I C I E N T S  

We now see that the explicit time dependence of the correlation function 
~F(t) is contained entirely in t he f  ~"). Equation (6) gives an explicit expression 
for f(n); the argument given subsequent to Eq. (6) indicates that one can 
write 

~F = ~ (~Fvo + ~Fvlt + ~Fv2t 2 + ..-) 
V 

(The summation over all species can be omitted for one-component gases.) 
In order to use these expressions in Eq. (8) for the transport coefficients, it 
is necessary to re-sum the expansion to obtain convergence of that integral. 
We sum from the series those terms that lead to a decaying exponential in 
time, yielding 

~F = ~ qPv0e-X~t[l + O(t~)] (19) 
V 

where the decay constants A~ have the expressions 

a~ = -qevl/qe~0 (20) 

These decay constants turn out to be positive for all relevant cases. A natural 
hierarchy of approximation then follows by truncation of the power series 
multiplying the exponential to include successively larger number of terms. 
It can now be seen from the time dependences of the f(~) that: qev0 involves 
only an average over the equilibrium ensemble; ~Fvl involves the dynamics 
of single collisions as well as the properties of the equilibrium ensemble (i.e., 
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uncollided molecules); the term of order t ~ is given by a sum of terms in- 
volving the dynamics of collision chains of length n and less. 

We can now perform the time integration in Eq. (8) to obtain a general 
expression for the transport coefficient L: 

C S" q~,0 L = ~z.., ~ [1 + corrections from terms O(t2)] (21) 

With the use of Eq. (20), the first approximation (corresponding to expo- 
nential decay) can be written as 

Lm = C N" ~Y~o p ~ ~ (22) 

We now proceed to explicitly evaluate this expression. In fact, the re- 
quired coefficients W.o and Re., are familiar integrals. Equation (18) yields 

q~,o = N,(A~IB~,) (23) 

since each of the chain probabilities f~"~ contributes only to coefficients of 
no lower power of t than the nth. 

For the same reasons, the coefficient tF,1 is obtained by expanding the 
term involvingf ~1~ in Eq. (18) and retaining only terms linear in time. With 
the use of Eq. (6) for f(l~ and Eq. (2) for the collision rate o~, the resulting 
expression may be written in terms of bracket integrals of the type discussed 
by Chapman and Cowling. ~3~ Defining such integrals by 

[A.~. B~j].~.u2 = 2=ff dv.~dv.2f~(vvl)fu(vu2) 

x f c~,~ sin X dx A,~(B~i - ~,~,n~~, (24) 

the procedure we have outlined lead to 

qe = - N ~  ~ n~G..([A~z, B.,lvz,.2 + [Avz, B.21~,.2) (25) 
/z 

The terms in this sum corresponding to v =/~  reduce to a function of the 
bracket integral defined by Chapman and Cowling: 

[A. B]~, = 2=ff dv.,dv.2f~(v.~)f~(v~2) 

f ~.. sin X dx A.~(B.1 + B.2 - n m  B(~)~ (26) X 
U v l  -- v2  ] 

With this definition, the equation for these terms is 

- N . n ~ G ~ ( [ A . ,  a . d . ~ , . ~  + [ A ~ ,  a ~ d . , ~ )  = - N~n~C~dA,  B ] .  (27) 

and this becomes the bracket integral expression for q~l in a single-com- 
ponent system. 
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Examples of these bracket integrals for various choices of the variables 
A~, and Bus expressed in terms of dimensionless velocities 

c~,, = (m~12kT)~/~v, ' (28) 

are evaluated by Chapman and Cowling in terms of the collision integrals 
(t) ~,u(s), which are defined by 

m I r l / 2  ( e x p - ~ . , ~ , u  Jo a,. f~,~(s) -- dg'v. wz ~w2~+ 2 ~" sin x dx (1 - cosZx) (29) 

where 

cg~ = (m,ul2k T)~/2g (30) 

and m, u is the reduced mass 

m, u = m,mul(m, + rnu) (31) 

The examples they give include all cases required for the thermal transport 
coefficients. 

5. DIFFUSION 

In an isothermal binary system of species a and b, where the mass 
fluxes Jv are linear functions of the gradients of the partial specific Gibbs free 
energies /zv, phenomenological coefficients are defined so as to satisfy the 
linear phenomenological relation ~21) 

-J~ = (Lva/T) Vtza + (L,UT) Vtzb, v = a or b (32) 

The explicit time-correlation function expressions ~8) for these phenomenologi- 
cal coefficients can be written as 

L,~/T= ~(m~m~)~'2V-~ fo~176 ( ~  ~'v~(O).Cg~j(t)) dt (33) 

This equation corresponds to Eq. (8), with the constant C~ given by 

Cw = 2(mvm~)l/2 (34) 

At t = 0, however, Eq. (33) is identically zero for v # K, which requires that 
the coefficient tF~0 in the series expansion of tF,~ vanishes as well. The 
apparent vanishing of L~>/T, as given by (22), proves no real difficulty. 

In fact, with Eqs. (21) and (23) applied to the results of Section 3 for this 
case, we obtain 

(Nv((~2~) - t(nvG~,[~vl, ~2]~,~2 

L-tN~n,G,,[cg,~, cg,2]~,, 2 + O(t2), v # K (35) 
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Furthermore, the coefficients L , , J T  are not independently measurable 
quantities, since the gradients of chemical potential are related by the Gibbs- 
Duhem relation: 

p~ V ~  + Pb V/~b = 0 (36) 

Consequently, Eq. (32) may be written as 

- J ,  = L,  V/z,,  v = a, b (37) 

where the numerical values of the observable coefficients are given by 

L~ = L ~ / T  - (p,Jpb)La~/T (38) 

Equation (35) may be used with Eq. (38) to obtain the time-correlation 
function expression for L~. (The expression for Lb follows upon interchange 
of a and b.) The result is 

+ nbGa~([c~a~, ~al]al,b2 - (P2/P~)(mb/m~)l/2[~'al, ~2]a~,~2)} + O(t2) 

(39) 

with 

Ca = Zm3 a ,  L ,  -- C~ V-  1 dt Wa (40) 

Equation (39) is the key equation in this calculation of the diffusion coefficient, 
since it leads directly to the Chapman-Enskog result (as will be proved be- 
low). It is therefore of interest to consider the physical significance of the 
individual terms shown there. Basically, the correlation function tF~ is 

. /=1  

and thus represents the correlation between the velocity of a molecule of 
species a and the velocities of all the other molecules in the system, regardless 
of species. The leading term in Eq. (39) gives the correlation before collisions 
have occurred; the only nonzero terms present when one has a random 
distribution of velocities are the autocorrelations. (We note that ( ~  .c~) 
= ~.) The set of coefficients multiplying t gives the rate of change of ~F~ 
which is due to single collisional events; the first of these [cg~l, c~al]~.~ 2 
represents the loss of the autocorrelation of the velocity of a species a mole- 
cule resulting from collision with another species a molecule, and the third 
[~al, ~l]~,0z represents the loss of autocorrelation caused by collision 
with a b molecule. The second term arises from a growth of correlation 
between the velocities of two a molecules subsequent to a collision between 
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them, and the fourth term represents growth of correlation between the 
velocities of an a and a b molecule due to their collision. Finally, the term of 
O(t 2) will, when written out in detail, contain terms that describe the changes 
in correlation that arise from the various types of two-collision chains possible 
in an a -b  mixture when one of the initial collision partners is restricted to 
be an a molecule. 

Collision integral expressions for all these bracket integrals are presented 
by Chapman and Cowling, and specifically with Eqs. (9.6, 1), (9.6, 4), and 
(9.6, 7) of their work, we find that Eqs. (39) and (40) can be rewritten as 

ab ab \ t 
La = p~ art 1 - t M~b P § O(t2) ' M~b = ma + m~ (42) 

Equation (42) includes the familiar approximation that the binary diffusion 
coefficient depends only on interactions of unlike molecules. To order t, this 
restriction arises through the exact cancellation of the decay of autocorrela- 
tions mediated by like-molecule collisions [term one in curly brackets in 
Eq. (39)] by the growth of correlations between velocities of molecules of 
like species (term two). This leaves the evolution of correlations through 
collisions of unlike molecules as the only single-collision contribution to the 
diffusion coefficient at nonzero time. 

The integral in Eq. (42) can be evaluated by the exponential resumma- 
tion scheme described in Section 4; the first approximation to La is thus 

L(~ 1) = (3 /16)paMab/pG,ba~(1)  (43) 

This equation and the corresponding example for L(bl)/T may be used in 
Eq. (36) for J, to obtain a relation for the relative diffusion velocity v~ - %. 
If, further, the gradients of/z, are related to the gradient of mole fraction 
Vxa = - Vx~ by 

Vlz~ = (kT/m~xv) Vxv 

the equation for v~ - vb may be cast into the form that defines the gas- 
kinetic binary diffusion coefficient, namely 

Va -- Vb = -- (n2/nanb)-~abVXa (44) 

The result of our calculation for ~ b  is then 

~ b  = ( 3 /16)k  T/nrn~G ~bf2(a~(1) (45) 

where m~b is the reduced mass. For hard spheres, this is the result obtained 
by the first Chapman-Enskog solution of the Enskog equation. (22) For 
more general interactions, for which we must take Ga~ = 1, it is the result 
obtained by the corresponding solution of the Boltzmann equation 
(Ref. 2, p. 527). 
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6. V ISCOSITY A N D  T H E R M A L  CONDUCTIV ITY  

To calculate the viscosity in terms of bracket integrals that are evaluated 
in the literature, we introduce the traceless diad ~,o~, defined in terms of its 
components (~~  B by the equation 

(cs = c g ~  _ �89 8~ (46) 

If we denote this tensor by q3, the time-correlation function expression for 
the kinetic component of the viscosity in a multicomponent isotropic system 
is given by (8) 

~ = ~kTV -1 dt ~, ~ ~, ~, (~6,~(0): ~,j( t))  (47) 
v ~ J 

where i and j denote molecules of species v and/~, respectively. This relation 
is of the form of Eq. (8). with 

c = 

and 

(48) 

A~ = B~ = ~6~i -- c g ~  (49) 

With these expressions, we may evaluate Eqs, (23) and (25) for the 

~(~) = ]kT/Gf~(2)(2) (53) 

values of ~Fvo and ~Fvl applicable to n, and use them in Eq. (22) for the trans- 
port coefficients themselves. The nonzero contributions to the coefficient 
W,0 are due only to autocorrelations, just as in the diffusion coefficient 
calculation. One finds 

 rvo = (50) 

For simplicity, consider a single-component system, and write ~F o = ~N; 
W1 then represents the change in correlation of ~ due to single collisional 
events, and contains two terms that give the collisional loss in autocorrelation 
for the ~ tensor of molecule 1 ; and the gain in mutual correlation between 
the ~; tensors of molecules 1 and 2. Equation (25) can be simplified to 

�9 r l  = -NG(E6~, ~;1112 + f6~, ~2h2) (51) 

Explicit expressions for these bracket integrals are given in Eqs. (9.6, 14) and 
(9.6, 15) of Chapman and Cowling; when molecules 1 and 2 have identical 
masses, the sum of the bracket integrals leads to an expression for the 
exponential decay constant [defined in Eq. (19)] which is 

h = (8/5)nGQ(Z)(2) (52) 

and thus to a first approximation to the viscosity which is 
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The G = 1 limit, which applies to all potentials in the limit of zero density, 
yields the same result obtained from the first Chapman-Enskog solution to 
the Boltzmann equation, as given by Chapman and Cowling's equation 
(9.7, 3). For hard spheres at arbitrary densities, Eq. (53) is the result obtained 
from the corresponding Chapman-Enskog approximation to the solution 
of the Enskog equation. (22~ 

In multicomponent systems, two significant alterations are necessary. 
In our first approximation, the correlation function becomes a sum of ex- 
ponentially decaying terms, one for each component in the gas. Second, the 
rate of  change of the ~-tensor correlation for a molecule of species v is due 
not just to collisions with v molecules, but to collisions with all other mole- 
cules. Consequently, the decay constant ~ for species v is 

av = - ' G d ' G o  = ~ ~ ,  nuGu~([~, ~11v1..2 + [~1. ~ (54) 
/z 

where the sum over p. includes species v as well as tz # v components. The 
first sum of bracket integrals in this equation reflects the decay of the auto- 
correlation of G1 through collisions with each of the species in the system, 
and the second sum reflects the growth of the mutual correlations. Equations 
(9.6, 15) and (9.6, 14) of Chapman and Cowling provide the collision integral 
relations for these bracket integrals: 

3 2 (2)  2 [~1,  73~]~1.~2 = (16/3)[5m~,f2~(1)/M~, + ~m~, f2~(2)/Mv~] (54a) 

and 

- ~-m~,f2~, (2)/Mv,] (54b) 

respectively. In the sum appearing in Eq. (54), the collision integrals (1~ 
vanish, and after some rearrangement we are left with 

(2)  Av = (32/5) ~ n~,Gv~,m~,f2~, (2)/M~ (55) 
/t 

When this result is substituted into Eq. (22) together with the expressions 
for C[Eq. (48)] and q~v0, one obtains an expression for the viscosity in a 
multicomponent system. For such a system with mole fractions x~, it is 
convenient to define a "mixture viscosity" ,Iv,-(1~ by the equation 

5 (2)  'I~u-(1) = ~k T/G~ufL, u (2) (56) 

and define as G ~ the viscosity of a single-component system of v-molecules. 
In this case the expression for the viscosity may be rearranged into 

~ (  1 x,, m.  1 ) -1 
-(~' = ~ + 2 ~ x~ M~. rl~ ~' (57) 

/ t # v  



The Calculation of Time Correlation Functions 297 

This equation is not identical with the first Chapman-Enskog solutions of the 
Boltzmann or Enskog equations. It is, in fact, an expression of the "Suther- 
land type," a relation that has been used in the past as the basis of empirical 
correlations of the viscosities of mixtures. 

Buddenberg and Wilke 2a fit data from 116 binary mixtures to a relation 
of this form, and proposed the expression 

v'~ + ~% (58) 
~7 = 1 + (Xb/Xa)(1.385~7,JDabp,~') 1 + (XJXb)(1.385%/Dabpb')  

where p~" is the density of pure v at the pressure and temperature to which 
applies. They report this relation fitted the compilation of the data they 

considered with an average deviation of 3.7~ To compare our results with 
their correlation, we use our Eqs. (57) and (44) to write 

nab = ~ m ~ n ~ ( l ~ / A  (59) 
with 

A = 1 (2) (1) ~ ( 2 ) / n ~ b  (1) (60) 

With this result, which also appears in the exact kinetic theory (Ref. 3, pp. 
163, 265), we may rearrange the binary example of eq. (57) into 

n(l~ = ~a % (61) 
1 + 3A(x~/x,~)['q~l)/~(1)](1/p,~ ") + 1 + 3A(xa/x~)[71~l)/~(1)](1/pb" ) 

The ratio of integrals A in this equation depends only weakly on the tempera- 
ture or species, 3A typically being within 17o of 1.32 when calculated for 
Lennard-Jones 6-12 potentials appropriate to real systems. 

Equation (61) was also obtained by Chapman and Cowling (Ref. 3, 
p. 243ff) as a result of approximating the Chapman-Enskog result in an ad 
hoc way so as to obtain an expression of the Sutherland form. It arises here 
from our having limited the correlations to be species-additive, as displayed 
in Eq. (54). If longer chains of collisions were considered in detail, each 
chain of more than one collision would have additive contributions from 
each possible sequence of species in the chain. The more complicated result 
of the Chapman-Enskog theory implicitly describes this greater diversity 
of collisional events. 

The most revealing comparison of Sutherland and Chapman-Enskog 
expressions for mixture viscosities is based on a nonlinear least squares fit 
of theory to experiment with values of the collision integrals themselves as 
the fitting parameters. When this is done for Ar-He mixtures, (24~ it is found 
that the Chapman-Enskog expression can be fitted to the data to within 
experimental accuracy of 0.1 ~ o,~2~ but that the Sutherland fit is less successful, 
deviating from the data as much as 0.57o. 
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The time-correlation function expression for the thermal conductivity 
of  a monatomic fluid is (e) 

K = 3 (mvm,) 1/2 dt . ~.  cg~, _ ~,,(0)- ~2j _ ~ ( ~ 1  (62) 

This equation may be written in the form of Eqs. (8) and (9) for 

Av, = B~, = my ll2(cg~ - {)~, (63) 

and 
C = 2kZT (64) 

For these variables ~F~0 is evaluated to give 

Wvo = (15]4)N~/m, (65) 

and the coefficient W~I is given in terms of tabulated bracket integrals of the 
Sonine polynomial expression (Ref. 3, p. 127) 

S(i)((~2~ ( 5  - -  (~2)~9 
5 1 2 k  ] = (66) 

We may use Chapman and Cowling's equation (9.6, 8) to evaluate the 
bracket integral in Eq. (28), and combine this result with Eqs. (64) and (65) 
in Eq. (22) to obtain the kinetic contribution to the thermal conductivity. 
For a single-component system, with the specific heat denoted by 0~, 

6~ = S k i m ,  (67) 

We may rearrange the result to 

K(1) : 
25 O~kT 

16 Gf~(2)(2) 
(68) 

In the limit of low densities, this is identical with Chapman and Cowling's 
equation (9.7, 3), and for hard spheres, it corresponds to the kinetic contri- 
bution to the thermal conductivity calculated from the Enskog equation.(22) 

In the case of a multicomponent system, the procedure leading to the 
expression for the thermal conductivity corresponds closely to that applied 
to the calculation of the viscosity, though with somewhat more algebra. If  
we define the quantity B~. by 

16 1 rn~ a/2 1 {(6m2 a12 I12 2 (1) = - llm~ m. + 5m. )f~.(1) 
B~. 15 k2Trn~ 12 (my + m.) a 

r~l/2(r~,3/2 312 (1) m. )(f~,.(2) lf~l'(3))} (69) + 4 , , . ~ ,  v , . v  - 
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it can be shown that the thermal conductivity is 

K '1) = ~ + ~,  ~ G,.B,. (70) 
/ t ~ v  

As in the case of the viscosity, this result differs in form from the results of 
the Chapman-Enskog solution, being of a simpler form that has in the past 
been inferred as an empirical correlation (Ref. 3, p. 255; Ref. 26). 

7. D I S C U S S I O N  

A derivation that gives accurate expressions for transport coefficients 
while by-passing the mathematical complexities of solutions to the Boltz- 
mann equation should be of considerable pedagogical value, and it is satis- 
fying that many of the physically appealing arguments of mean-free-path 
theory are explicitly incorporated in the treatment. In most cases the first 
Chapman-Enskog approximations have been recovered. Additionally, a 
prescription is obtained for generating higher approximations by including 
the effects of longer chains of uncorrelated collisions. This hierarchy of 
approximations reflects an increasingly accurate description of the randomiza- 
tion of molecular velocities, which is necessitated by the fact that averages 
over one collision do not lead to complete randomization, so that longer 
collision chains are required before correlation with the initial velocity is 
completely lost. The effects of cyclic collision chains are neglected in this 
picture; much effort has been and is being expended in calculating such 
correlations in more exact work. ~1) 

Our method does lead to results for the multicomponent viscosity and 
thermal conductivity that differ from the lowest order Chapman-Enskog 
solutions to the Boltzmann equation. Relations such as those obtained here 
for these properties were originally obtained from mean-free-path-type 
arguments in which transfers of momentum and energy were additively 
affected by collisions of a molecule with others of each species in the system. ~27) 
In view of the similarity of the physical pictures, it is not surprising that the 
present approach yields results of a similar form; however, we are able to 
express mixture properties in terms of collision integrals (rather than the 
experimental viscosities and thermal conductivities of the pure components), 
and we do give a prescription for extending and (hopefully) improving these 
first approximations to the mixture transport coefficients. 

Since the use of mean-free-path ideas has successfully been used in this 
paper to evaluate time-correlation function expressions for the transport 
coefficients of simple dilute gases, it is possible that this approach may 
prove useful for studying systems for which solutions of the kinetic equations 
(or perhaps even the equations themselves) are uncertain. These cases include 
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systems with internal  degrees of freedom and  gases in the regime where gas- 

wall collisions become important .  Work  is currently under  way on these 

problems. 
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